SOA vs MSA

Microservices Architecture — A developer perspective

Monolithic Application Architecture

Ul

Access Control

Business Logic

Data Access Object

|

>

MSA Generic
Architecture

»Note: Ideally there should be a
service to render Ul as well

SOA Generic Architecture

Consumers Layer

Cloud Service Browser
Consumers (Human Users)

Enterprise Service Bus (ESB)

K I:I

Database Database

MSA Maturity Level Matrix

Application

Database

Infrastructure

Monitoring

Lewvel O Lewvel 1 Level 2 Lewvel 3
Traditional Basic Intermediate Advanced
Monolithic Service Oriented Service Oriented AP| Centric

Integrations

Applications

One Size Fit All
Enterprise DB

Enterprise DB + No
S0Ls and Light

Polyglot, DBaaS

Matured Data Lake
/ Mear Realtime

databases Analytics
Physical Machines Virtualization Cloud Containers
App & Infra APM & Central Log
Infrastrucure Monitoring APMs Man ment
Waterfall Agile and CI Cl & CD DevwOps

Characteristics of MSA

ook owdE

~

Scalability -- How our services can be scaled on demand?
Availability -- How can we ensure that our services are available all the time or meet SLA?
Resiliency -- How our services can be made fault tolerant?

Independent, autonomous -- Are our services independent and autonomous?
Decentralized governance -- Can we manage services end to end in DevSecsOPs independently?
Failure isolation-- What happens if one service is not available and some composite service is also
using it?

Auto-Provisioning -- Can a service be provisioned based on an event?

Continuous delivery through DevOps -- Are services using CI/CD for DevSecOps?
If we have exposed some services as API are they following 12-factor guidelines of at least
implemented versioning and metering?

\

Problem with traditional capacity planning

Traditional capacity planning:

1. Under provisioned
2. Over provisioned

We should utilize cloud to provision optimum/o
demand provisioning

Async, Sync or event based request
processing

From platform point of view:

1. Categorize synchronous and asynchronous
processing. Try to move more and more to
asynchronous processing to plan for CROPS kind
of infrastructure of future as platform

2. Use microservices where on-demand scaling is
required \

CROPS (Cost-optimized, Resilient, Operationally-excellent, Performant and Secure)

\

Async vs Sync or event -- new custom
registration

<Your Story and Imagination>

Async vs Sync or event - Order fulfilm

<Your Story and Imagination>

The Art of Scalability

Decomposition can have three directions:

Horizontal duplication: scale by cloning similar
components and using load balancing.

Functional decomposition: scale by dividing different
logical parts of the system.

Data partitioning: scale by splitting non-dependent similar
data.

Note: Virtually every system/application can be scale
time, effort and resource all that matters while sc

Inter Service Communication - Synchr
Request Processing

Synchronous

HTTP sync
A————

Inter Service Communication - Asynch
Request Processing

Asynchronous

one-to-ane . _ ° @
p syn<

=l — -l

Inter Service Communication - Asynch
Request Processing

Pub/Sub

HTTP sync @

w

@QQ

Design Patterns of Microservices

Aggregator - development pattern

. APl Gateway -- deployment pattern

. Chained or Chain of Responsibility -- development pattern
. Asynchronous Messaging -- development pattern
Database or Shared Data -- devops

Event Sourcing -- devops

Branch -- development pattern

. Command Query Responsibility Segregation - devops
Circuit Breaker -- devops

0. Decomposition - art of breaking monolith into automic services

1.
2
3
4
5.
6.
7
8
9.
1

1. Aggregator Pattern

2. APl Gateway Pattern

/

o (RREY

o

Load Balancer

3. Chained or Chain of Responsibility Pattern

i e i ™
Service A w - ServiceB - - Service G J

|
4

\

4, Asynchronous Messaging Pattern

‘ Service A } \ Service B

;»

[\

5. Database or Shared Data Pattern

- Service B \

- Service A/ g
‘ Service G }—~ Service D

s | R,

3

6. Event Sourcing Pattern

-

-

[Materialized View]

{ Query for Current State }

[External Systems

Used with Database pattern to sync individual DB or to provide eve

consistency

4

7. Branch Pattern

 ServiceB

L smm:u/ — o
s 3 oa
| -

Extension of Aggregator pattern to ward of problem with chaining

8. CQRS Pattern

7~

Works with Database per service and event sourcing pattern when
need to query other database

9. Circuit Breaker Pattern

Circuit Breaker

P

N

Load Balancer

Down Service ».

Nl

Tools to work with MSA

To start with microservices development, testing and deploym

1. SpringBoot —Java platform for developing
microservices

2. Docker — containerization

3. Swarm - simple stack deployment using docker
container

4. MongoDB —NoSQL Database

5. Redis —in memory database for caching

6. RabbitMQ — Messaging platform for managing queue
and topics

7. Swagger — APl documentation and testing

Thank you

