SOA vs MSA

Microservices Architecture — A developer perspective
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MSA Generic
Architecture

»Note: Ideally there should be a
service to render Ul as well




SOA Generic Architecture
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MSA Maturity Level Matrix
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Characteristics of MSA
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Scalability -- How our services can be scaled on demand?
Availability -- How can we ensure that our services are available all the time or meet SLA?
Resiliency -- How our services can be made fault tolerant?

Independent, autonomous -- Are our services independent and autonomous?
Decentralized governance -- Can we manage services end to end in DevSecsOPs independently?
Failure isolation-- What happens if one service is not available and some composite service is also
using it?

Auto-Provisioning -- Can a service be provisioned based on an event?

Continuous delivery through DevOps -- Are services using CI/CD for DevSecOps?
If we have exposed some services as API are they following 12-factor guidelines of at least
implemented versioning and metering?
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Problem with traditional capacity planning

Traditional capacity planning:

1. Under provisioned
2. Over provisioned

We should utilize cloud to provision optimum/o
demand provisioning



Async, Sync or event based request
processing

From platform point of view:

1. Categorize synchronous and asynchronous
processing. Try to move more and more to
asynchronous processing to plan for CROPS kind
of infrastructure of future as platform

2. Use microservices where on-demand scaling is
required \

CROPS (Cost-optimized, Resilient, Operationally-excellent, Performant and Secure)
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Async vs Sync or event -- new custom
registration

<Your Story and Imagination>



Async vs Sync or event - Order fulfilm

<Your Story and Imagination>



The Art of Scalability

Decomposition can have three directions:

Horizontal duplication: scale by cloning similar
components and using load balancing.

Functional decomposition: scale by dividing different
logical parts of the system.

Data partitioning: scale by splitting non-dependent similar
data.

Note: Virtually every system/application can be scale
time, effort and resource all that matters while sc



Inter Service Communication - Synchr
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Inter Service Communication - Asynch
Request Processing
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Design Patterns of Microservices

Aggregator - development pattern

. APl Gateway -- deployment pattern

. Chained or Chain of Responsibility -- development pattern
. Asynchronous Messaging -- development pattern
Database or Shared Data -- devops

Event Sourcing -- devops

Branch -- development pattern

. Command Query Responsibility Segregation - devops
Circuit Breaker -- devops

0. Decomposition - art of breaking monolith into automic services
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1. Aggregator Pattern




2. APl Gateway Pattern
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3. Chained or Chain of Responsibility Pattern
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4, Asynchronous Messaging Pattern
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5. Database or Shared Data Pattern
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6. Event Sourcing Pattern

-

-

[ Materialized View ]

{ Query for Current State }

[ External Systems

Used with Database pattern to sync individual DB or to provide eve

consistency

4




7. Branch Pattern
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Extension of Aggregator pattern to ward of problem with chaining




8. CQRS Pattern
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Works with Database per service and event sourcing pattern when
need to query other database



9. Circuit Breaker Pattern
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Tools to work with MSA

To start with microservices development, testing and deploym

1. SpringBoot —Java platform for developing
microservices

2. Docker — containerization

3.  Swarm - simple stack deployment using docker
container

4. MongoDB —NoSQL Database

5. Redis —in memory database for caching

6. RabbitMQ — Messaging platform for managing queue
and topics

7. Swagger — APl documentation and testing



Thank you




