
Microservices Architecture – A developer perspective

Vijay Shankar Jha

SOA vs MSA

Monolithic Application Architecture

UI

Access Control

Business Logic

Data Access Object

Database

MSA Generic
Architecture

Note: Ideally there should be a

service to render UI as well

SOA Generic Architecture

MSA Maturity Level Matrix

Characteristics of MSA

1. Scalability -- How our services can be scaled on demand?

2. Availability -- How can we ensure that our services are available all the time or meet SLA?

3. Resiliency -- How our services can be made fault tolerant?

4. Independent, autonomous -- Are our services independent and autonomous?

5. Decentralized governance -- Can we manage services end to end in DevSecsOPs independently?

6. Failure isolation-- What happens if one service is not available and some composite service is also

using it?

7. Auto-Provisioning -- Can a service be provisioned based on an event?

8. Continuous delivery through DevOps -- Are services using CI/CD for DevSecOps?

9. If we have exposed some services as API are they following 12-factor guidelines of at least

implemented versioning and metering?

Problem with traditional capacity planning

Traditional capacity planning:

1. Under provisioned
2. Over provisioned

We should utilize cloud to provision optimum/on-
demand provisioning

Async, Sync or event based request

processing

From platform point of view:

1. Categorize synchronous and asynchronous
processing. Try to move more and more to
asynchronous processing to plan for CROPS kind
of infrastructure of future as platform

2. Use microservices where on-demand scaling is
required

CROPS (Cost-optimized, Resilient, Operationally-excellent, Performant and Secure)

Async vs Sync or event -- new customer

registration

<Your Story and Imagination>

Async vs Sync or event – Order fulfilment

<Your Story and Imagination>

The Art of Scalability

Decomposition can have three directions:

Horizontal duplication: scale by cloning similar

components and using load balancing.

Functional decomposition: scale by dividing different

logical parts of the system.

Data partitioning: scale by splitting non-dependent similar

data.

Note: Virtually every system/application can be scaled, it is
time, effort and resource all that matters while scaling.

Inter Service Communication - Synchronous

Request Processing

Inter Service Communication - Asynchronous

Request Processing

Inter Service Communication - Asynchronous

Request Processing

Design Patterns of Microservices

1. Aggregator - development pattern

2. API Gateway -- deployment pattern

3. Chained or Chain of Responsibility -- development pattern

4. Asynchronous Messaging -- development pattern

5. Database or Shared Data -- devops

6. Event Sourcing -- devops

7. Branch -- development pattern

8. Command Query Responsibility Segregation - devops

9. Circuit Breaker -- devops

10. Decomposition - art of breaking monolith into automic services

1. Aggregator Pattern

2. API Gateway Pattern

3. Chained or Chain of Responsibility Pattern

4. Asynchronous Messaging Pattern

5. Database or Shared Data Pattern

6. Event Sourcing Pattern

Used with Database pattern to sync individual DB or to provide eventual
consistency

7. Branch Pattern

Extension of Aggregator pattern to ward of problem with chaining pattern

8. CQRS Pattern

Works with Database per service and event sourcing pattern when service
need to query other database

9. Circuit Breaker Pattern

Tools to work with MSA
To start with microservices development, testing and deployment

1. SpringBoot – Java platform for developing
microservices

2. Docker – containerization
3. Swarm – simple stack deployment using docker

container
4. MongoDB –NoSQL Database
5. Redis – in memory database for caching
6. RabbitMQ – Messaging platform for managing queue

and topics
7. Swagger – API documentation and testing

Thank you

